client: self

description: Invitation for my daughter’s first birthday party

edenskye

eden magbilang’s first birthday BBQ

Date
Saturday, August 2

Time
11 am

Place
Rinconada Park,
Palo Alto

RSVP
by July 26
415.596.8194
victoria@aquadesignstudio.com

Directions to Rinconada Park

From Highway 280
From either North- or Southbound 280, take the Embarcadero Road exit, Eastbound. Rinconada Park is on the right side of the street.

From Interstate 280
From either North- or Southbound 280, take the Pagemill Rd. exit Eastbound to El Camino Real (about 5 miles). Turn left on El Camino and continue to Embarcadero Road. Turn right on Embarcadero Road. Rinconada Park is on the left side.
California Center for Pituitary Disorders at UCSF

Providing state-of-the-art treatment and world-class care

Message from the Directors

The University of California, San Francisco has been at the forefront of developing treatments for pituitary disorders since 1965, under the leadership of Dr. Charles P. Stoelting. In 1975, Edward D. Neumann, MD, performed the first transsphenoidal (surgical) operation for pituitary adenomas and hypophysitis in the United States. During the 1980s, Dr. Fred H. Hschmidt, MD, was one of the first to successfully transplant healthy pituitary tissue to treat pituitary disorders, and his work laid the foundation for current treatment options.

In 1990, UCSF became a major referral center for pituitary disorders, with the establishment of the Neuroendocrinology Division under the leadership of Dr. Lewis Blevins. In 2000, the first successful transsphenoidal microsurgical resection for pituitary adenomas was performed by Dr. Rajiv Desai, UCSF.

Today, the California Center for Pituitary Disorders is recognized as one of the leading centers in the world for the diagnosis and treatment of pituitary disorders. We are committed to providing the best care available, and our team of specialists is dedicated to working with referring physicians to ensure the highest quality of care for our patients.

We are committed to excellence in patient care, to the advancement of knowledge pituitary disease, and to education and training of the next generation of specialists in this field.

Lewis Blevins, MD
Medical Director

Shanon Kunwar, MD
Co-Director

Sandeep Kunwar, MD
Co-Director

Neuroendocrinology

Neuroendocrinology offers advanced diagnostic tools for evaluating endocrine disease.

The California Center for Pituitary Disorders at UCSF is a multidisciplinary team of specialists dedicated to the diagnosis and treatment of pituitary disorders. Our team includes neurosurgeons, endocrinologists, neurologists, and radiologists, among others.

We are committed to providing state-of-the-art care to patients. We have devised and implemented unique strategies to permit the evaluation and management of pituitary and hypothalamic-pituitary disorders.

We specialize in diagnosis and treatment of pituitary disorders, including:

- Prolactinomas
- Cushing's disease
- Acromegaly
- Hormonally active adenomas
- Hormonally inactive tumors
- Other pituitary tumors
- Recurrent tumors
- Rare pituitary pathologies
- Germ cell tumors
- Inflammatory diseases
- Hypothalamic tumors
- Rathke's cleft cysts
- Craniopharyngiomas
- Diabetes insipidus (DI)
- Hypopituitarism
- Hypothalamic-pituitary unit

We provide transsphenoidal microsurgical and endoscopic approaches for pituitary adenomas, permitting the evaluation of complex pituitary pathologies.

We have a long history of innovation and excellence in the field of endocrinology. We have been at the forefront of developing and implementing new techniques and treatments for pituitary disorders.

A History of Innovation

The University of California, San Francisco has been at the forefront of developing treatments for pituitary disorders since 1965, under the leadership of Dr. Charles P. Stoelting. In 1975, Edward D. Neumann, MD, performed the first transsphenoidal (surgical) operation for pituitary adenomas and hypophysitis in the United States. During the 1980s, Dr. Fred H. Hschmidt, MD, was one of the first to successfully transplant healthy pituitary tissue to treat pituitary disorders, and his work laid the foundation for current treatment options.

In 1990, UCSF became a major referral center for pituitary disorders, with the establishment of the Neuroendocrinology Division under the leadership of Dr. Lewis Blevins. In 2000, the first successful transsphenoidal microsurgical resection for pituitary adenomas was performed by Dr. Rajiv Desai, UCSF.

Today, the California Center for Pituitary Disorders is recognized as one of the leading centers in the world for the diagnosis and treatment of pituitary disorders. We are committed to providing the best care available, and our team of specialists is dedicated to working with referring physicians to ensure the highest quality of care for our patients.

We are committed to excellence in patient care, to the advancement of knowledge pituitary disease, and to education and training of the next generation of specialists in this field.

Lewis Blevins, MD
Medical Director

Shanon Kunwar, MD
Co-Director

Sandeep Kunwar, MD
Co-Director
Client: University of California, San Francisco
Description: Website for new UCSF Mission Bay Campus
client: rm remodeling, inc.
description: identity system
Comprehensive Care for Children: The Practice of Pediatric Neurological Surgery at UCSF

Pediatric neurosurgical care at UCSF has evolved significantly over the past few years. "Our long-term goal is to provide world-class care in a setting where the children feel comfortable," says Gupta. "Our team of pediatric neurosurgeons and subspecialists is dedicated to improving the quality of life for children with neurological disorders."

Pediatric neurosurgeons are located in the Pediatric Neurosurgery Division at UCSF and are experts in the management of children with neurological disorders. These disorders can range from common childhood conditions, such as attention-deficit hyperactivity disorder (ADHD), to rare and complex disorders, such as intractable epilepsy and spina bifida. The team is dedicated to providing the best possible care for children with neurological disorders.

Pediatric neurosurgeons are located in the Pediatric Neurosurgery Division at UCSF and are experts in the management of children with neurological disorders. These disorders can range from common childhood conditions, such as attention-deficit hyperactivity disorder (ADHD), to rare and complex disorders, such as intractable epilepsy and spina bifida. The team is dedicated to providing the best possible care for children with neurological disorders.
Finding a vaccine treatment for brain tumors is the top priority for Dr. Andy Parsa, holder of the Reza and Georgianna Khatib Endowed Chair in Skull Base Tumor Surgery. Dr. Parsa and Dr. Russ Pieper, holder of the Suzanne Marie and Robert Vincent Haderle Endowed Chair in Molecular Neuro-Oncology, and Director of Basic Science for the UCSF Brain Tumor Research Center, are studying cell-signaling pathways and their effects on immunotherapies against tumors.

Dr. Parsa is currently working on a phase 2 clinical trial testing a heat shock protein vaccine for gliomas, which are the most common type of brain tumor in adults. Heat shock proteins latch on to specific molecules found only in the tumor, and identify them as enemies to the immune system. The heat shock protein vaccine is created directly from a person's tumor tissue, making it a highly individualized treatment that may trigger a stronger immune response than a more generic vaccine. Changes in certain cell-signaling pathways suppress the immune system and may nullify the effect of the vaccine even if it can alert the immune system to the presence of tumor cells. By examining which patients have altered pathways, we are more likely to determine who will benefit most from the vaccine.

Thanks to funds provided by each of their endowed chairs and unrestricted gifts to the Brain Tumor Center, Drs. Parsa and Pieper hope to develop an immunotherapy that is tailored to the specific biological characteristics of each patient. By examining the role of critical pathways in immunoresistance, this project may increase the therapeutic benefit of immunotherapy for brain tumors.

Turning research into treatment

Dr. Susan Chang, holder of the Lai Wan Kan Endowed Chair, and Dr. Sarah Nelson, the Margaret Hart Surbeck Distinguished Professor, are assessing the role of physiologic imaging, including magnetic resonance spectroscopy imaging (MRSI) and perfusion imaging, in diagnosing brain tumors and designing more personalized treatments. With information about specific characteristics of brain tumors, doctors can better predict which patients will be good candidates for immunotherapies and which will not benefit from them.

By using these physiologic imaging techniques, Dr. Chang and Dr. Nelson can create a more in-depth profile of tumor and normal brain tissue than they could with standard anatomical magnetic resonance imaging (MRI). The next step is to use clinical trials to determine whether these indices provide relevant information that can help doctors predict a tumor's response to treatment. If so, researchers can use this data to refine patient groups for future trials, as well as apply the technology clinically to help tailor treatment to an individual patient's characteristics.
Brain Tumor Research Center

The UCSF Brain Tumor Research Center (BTRC) is an organization that brings together all members of the UCSF University community interested in brain tumor research. The BTRC was the creation of Charles Wilson, MD, in 1972 with a grant to support research and train scientists for brain tumor biology and treatment. Today, the BTRC consists of 25 principal investigators, primarily troll biology and treatment.

Stem Cells & Developmental Biology

The Laboratory of Stem Cells and Developmental Biology, directed by David Rowitch, MD, PhD, has identified the molecular mechanisms that control proliferation and differentiation of neural progenitor cells. These studies allow us to understand the molecular basis of brain development, and provide insights into neural stem cell biology in normal and disease states.

Central Nervous System Development & Tumorigenesis

The research program is currently characterized by the study of normal CNS development, with specific emphasis on the role of transcription factors in the specification of neuronal and glial cells. The laboratory is examining the role of Hedgehog signaling in normal CNS development, and the critical roles played by down-regulation of specific growth factor signaling pathways in neural stem cells and glioblastoma tumors. These studies provide insights into the mechanisms of brain development and tumorigenesis.

PNET Tumors in the Embryonic Environment

The group is currently examining the role of the embryonic environment in the development of PNET tumors. The laboratory is using in vivo and in vitro models to study the effects of the embryonic environment on the development and behavior of PNET tumors. This research provides new insights into the development of brain tumors and the mechanisms of brain tumor development.
client: hotel lights

description: cd cover, website and poster for rock band
client: aaron calhoun
description: business card

web development
digital media work
client: university of california, san francisco
description: website for ucsf department of campus planning
Welcome to the Industry Leader Reception

Industry Leader Reception

Welcome to the

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Industry Leader Reception

Welcome to the

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind

Welcome to the Industry Leader Reception

Top of Mind